GENOME ENGINEERING

The Genome Project–Write
We need technology and an ethical framework for genome-scale engineering

By Jef D. Boeke,* George Church,* Andrew Hessel,* Nancy J. Kelley,* Adam Arkin, Yizhi Cai, Rob Carlson, Aravinda Chakravarti, Virginia W. Cornish, Liam Holt, Farren J. Isaacs, Todd Kuiken, Marc Lajoie, Tracy Lessor, Jeantime Lunshof, Matthew T. Maurano, Leslie A. Mitchell, Jasper Rine, Susan Rosser, Neville E. Sanjana, Pamela A. Silver, David Valle, Harris Wang, Jeffrey C. Way, Luhan Yang

T he Human Genome Project (“HGP-read”), nominally completed in 2004, aimed to sequence the human genome and to improve the technology, cost, and quality of DNA sequencing (1, 2). It was biology’s first genome-scale project and at the time was considered controversial by some. Now, it is recognized as one of the great feats of exploration, one that has revolutionized science and medicine.

Although sequencing, analyzing, and editing DNA continue to advance at a breakneck pace, the capability for constructing DNA sequences in cells is mostly limited to a small number of short segments, which restricts the ability to manipulate and understand biological systems. Further understanding of genetic blueprints could come from construction of large, gigabase (Gb)–sized animal and plant genomes, including the human genome, which would, in turn, drive development of tools and methods to facilitate large-scale synthesis and editing of genomes. To this end, we propose the Human Genome Project–Write (HGP-write), named to honor HGP-read but embracing synthesis of all large genomes.

RESPONSIBLE INNOVATION
Genome synthesis is a logical extension of the genetic engineering tools that have been used safely within the biotech industry for ~40 years and have provided important societal benefits. However, recent technological advancements—e.g., standardized gene parts, whole-genome synthesis, and clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 genome editing technology (3, 4)—are revolutionizing the field (5). Some applications are controversial; human germline editing in particular has raised intense moral debate (6). As human genome-scale synthesis appears increasingly feasible, a coordinated scientific effort to understand, discuss, and apply large-genome engineering technologies is timely. HGP-write will require public involvement and consideration of ethical, legal, and social implications (ELSI) from the start. Responsible innovation requires more than ELSI, though, and involves identifying common goals important to scientists and the wider public through timely and detailed consultation among diverse stakeholders.

We will enable broad public discourse on HGP-write; having such conversations well in advance of project implementation will guide emerging capabilities in science and contribute to societal decision-making.

The list of author affiliations is available in the supplementary materials. *These authors contributed equally to this work.

Email: jef.boeke@nyumc.org

Published by AAAS
push current conceptual and technical limits by orders of magnitude and deliver important scientific advances.

HGP-write will aim to address a number of human health challenges. Potential applications include growing transplantable human organs; engineering immunity to viruses in cell lines via genome-wide recoding (12); engineering cancer resistance into new therapeutic cell lines; and accelerating high-productivity, cost-efficient vaccine and pharmaceutical development by using human cells and organoids. The project could encourage broad intellectual property access via patent pooling. Extreme cost-reduction is feasible, as demonstrated by the $1000 genome grant program (2), as well as making whole- or partial-genome synthesis an efficient route to these goals.

PROJECT LAUNCH AND ADMINISTRATION

The goal is to launch HGP-write in 2016 with $100 million in committed support, from public, private, philanthropic, industry, and academic sources from around the world. The costs of the project lie not only in obtaining de novo synthesized DNA but in the assembly, integration, and functional assays required to evaluate and understand the modified genomes. Total project costs are difficult to estimate but would likely be less than the $3 billion cost of HGP-read.

HGP-write could be implemented through one or more centers [similar to Centers of Excellence in Genomic Science (CEGS) and the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative centers] that will coordinate and support formation and work of multi-institutional and interdisciplinary research teams working in a highly integrated fashion responsive to and engaged with a broad public outreach.

We celebrate 2016—the 25th anniversary of HGP-read—as a major step forward for human knowledge and health. In this spirit, we look forward to the launch of HGP-write.

REFERENCES AND NOTES

ACKNOWLEDGMENTS

This paper is the result of meetings held at NYU Langone Medical Center 31 October 2015 and Harvard Medical School on 10 May 2016. F.J.I. is a cofounder of enEvolve, Inc. G.C. has financial relationships with Gen9, Editas, enEvolve, and Egenesis (companies directly related to this article; for a full list of G.C.'s financial relationships, see arep.med.harvard.edu/gmc/tech.html). J.D.B. is on the board of directors of Neochromosome, Inc., and owns stock in Recombinetics, Inc., and Sample6, Inc. A.H. has investments in Autodesk, Inc. G.C. is an inventor on patents and patent applications filed by Harvard Medical School that cover synthesis, assembly, and testing of large DNAs. This Policy Forum is the opinion of the authors and not that of their employers or institutions. The authors gratefully acknowledge the financial support of Autodesk, sponsor of the meetings.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/353/6295/126/suppl/DC1

Published online 2 June 2016

10.1126/science.aaf6850
Editor's Summary

The Genome Project-Write
Science 353 (6295), 126-127. [doi: 10.1126/science.aaf6850]
orignally published online June 2, 2016

Article Tools
Visit the online version of this article to access the personalization and article tools:
http://science.sciencemag.org/content/353/6295/126

Permissions
Obtain information about reproducing this article:
http://www.sciencemag.org/about/permissions.dtl
Supplementary Materials for

The Genome Project–Write

*These authors contributed equally to this work.
†Corresponding author. Email: jef.boeke@nyumc.org

Published 2 June 2016 on Science First Release
DOI: 10.1126/science.aaf6850

This PDF file includes:

Fig. S1
Author affiliations
Fig. 1. Synthesizing synthetic or semisynthetic genomes. A. Efficiency trends in DNA sequencing (green) and synthesis of double-stranded DNA (dsDNA, blue) and single-stranded DNA (ssDNA, red) over the past ~35 years. Double-stranded DNA, or gene synthesis, has improved noticeably over the past ~10 years, but still lags behind sequencing and ssDNA synthesis. The disruptive improvement in sequencing and ssDNA (oligonucleotides) synthesis technologies has improved from multiplex and miniaturization technologies in high-throughput DNA sequencing and oligo microarray technologies, respectively. Commercial gene synthesis technologies relies on both oligo synthesis (building blocks) and sequencing (validation of synthesis) technologies. B. Graphical representation of four representative genomes benchmarked to the size of the 3,000 MB human chromosomes: 9.5 kb hepatitis C virus (HCV) enlarged ~380,000-fold, 1.1 MB Mycoplasma mycoides enlarged ~1,000-fold, 12 MB yeast enlarged 100-fold.
Bibliography
As further support for the arguments in our paper, this is a (non-comprehensive) sampling of precedents for projects that could take advantage of radical reduction in cost of genome-scale synthesis and high-throughput cellular/organismal testing of consequences. As with HGP-read, this effort need not be restricted to human but could and should include mouse, pig, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, etc. The bibliography, along with proposals for pilot projects, maybe found online at the project web site www.hgpwrite.org

Author affiliations
1Institute for Systems Genetics at New York University Langone Medical Center, New York, NY, USA. Email: jef.boeke@nyumc.org

2Wyss Institute for Biologically Inspired Engineering at Harvard Medical School, Massachusetts Institute of Technology, Boston/Cambridge, MA, USA. Email: gmc@harvard.edu

3Autodesk Bio/Nano Research Group, San Rafael, CA, USA. Email: andrew.hessel@autodesk.com

4Nancy J Kelley & Associates. New York, NY, USA. Email: nancy@nancyjkelley.com

5Department of Bioengineering, University of California, Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Email: aparkin@lbl.gov

6Edinburgh Genome Foundry, School of Biological Sciences at University of Edinburgh, Edinburgh, Scotland. Email: yizhi.cai@ed.ac.uk

7Bioeconomy Capital, Seattle, WA, USA. Email: rob@synthesis.cc

8McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins University School of Medicine, Baltimore, MD, USA. Email: achakra1@jhmi.edu

9Departments of Chemistry and Systems Biology at Columbia University, New York, NY, USA. Email: vc114@columbia.edu

10Institute for Systems Genetics at New York University Langone Medical Center, New York, NY, USA. Email: liam.holt@nyumc.org

11Department of Molecular, Cellular and Developmental Biology, Systems Biology Institute at Yale University, New Haven, CT, USA. Email: farren.isaacs@yale.edu
12 Science and Technology Innovation Program at Woodrow Wilson International Center for Scholars, Washington, DC, USA. Email: todd.kuiken@wilsoncenter.org

13 Department of Biochemistry at University of Washington, Seattle, WA, USA. Email: mlajoie@uw.edu

14 Feinstein Kean Healthcare, Cambridge, MA, USA. Email: tracy.lessor@fkhealth.com

15 Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Genetics, University of Groningen, Groningen, The Netherlands. Email: j.e.lunshof@umcg.nl

16 Institute for Systems Genetics, NYU Langone Medical Center, New York, NY, USA. Email: maurano@nyu.edu

17 Institute for Systems Genetics, NYU Langone Medical Center, New York, NY, USA. Email: mitchell@nyumc.org

18 Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA. Email: jrine@berkeley.edu

19 Edinburgh Genome Foundry, School of Biological Sciences at University of Edinburgh, Edinburgh, Scotland. Email: yizhi.cai@ed.ac.uk

20 New York Genome Center; Department of Biology, New York University, New York, NY, USA. Email: nsanjana@nygenome.org

21 Department of Systems Biology, Wyss Institute of Biologically Inspired Engineering at Harvard Medical School, Boston, MA, USA. Email: pamela_silver@hms.harvard.edu.

22 McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins University School of Medicine, Baltimore, MD, USA. Email: dvalle@jhmi.edu.

23 Department of Systems Biology, Department of Pathology and Cell Biology at Columbia University, College of Physicians and Surgeons, New York, NY, USA. Email: hw2429@columbia.edu

24 Wyss Institute for Biologically Inspired Engineering at Harvard Medical School, Boston, MA, USA. Email: jeff.way@wyss.harvard.edu

25 eGenesis, Inc., Boston, MA, USA. Email: luhan.yang@egenesisbio.com